225k views
3 votes
The graph of y= sqrt of x is transformed as shown in the graph below. Which equation represents the transformation function?

Graph and choices:

The graph of y= sqrt of x is transformed as shown in the graph below. Which equation-example-1
The graph of y= sqrt of x is transformed as shown in the graph below. Which equation-example-1
The graph of y= sqrt of x is transformed as shown in the graph below. Which equation-example-2
User Webwake
by
8.9k points

2 Answers

2 votes

Answer:

A

Explanation:

edge 2020

User Charlie Pico
by
8.2k points
6 votes

Answer:

The equation that represents the transformation function is:


y=-√(x)+2

Explanation:

We are given a parent function f(x) as:


f(x)=√(x)

Now, this function f(x) is transformed to get a function whose graph is given.

Let the transformed function is: g(x)

Clearly by looking at the graph we observe that at x=4 we have:

g(x)=0

2)


y=√(-x)+2

at x=4 , we have:


y=√(-4)+2

As the term under the square root is negative hence, we will get the function's value as imaginary value and not real.

Hence, Option (2) is incorrect.

3)


y=√(-x)-2

at x=4 , we have:


y=√(-4)-2

As the term under the square root is negative hence, we will get the function's value as imaginary value and not real.

Hence, Option (3) is incorrect.

4)


y=-√(x)-2

at x=4 , we have:


y=-√(4)-2\\\\y=-2-2\\\\y=-4\\eq 0

Hence, option (4) is incorrect.

1)


y=-√(x)+2

at x=4 , we have:


y=-√(4)+2\\\\y=-2+2\\\\y=0

Hence, option (1) is the correct answer.

User Madcrazydrumma
by
8.4k points