Answer:

General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Distributive Property
Algebra I
- Terms/Coefficients
- Expanding
- Factoring
- Functions
- Function Notation
Calculus
Derivatives
Derivative Notation
Derivative Property [Addition/Subtraction]:
![\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]](https://img.qammunity.org/2018/formulas/mathematics/high-school/44u8gzhn9ta01w8xtfd21jo1ablmtfakai.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]:
![\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://img.qammunity.org/2018/formulas/mathematics/college/fmesql9w8fux2f3pm7q5e1vbby82cqcoak.png)
Derivative Rule [Quotient Rule]:
![\displaystyle (d)/(dx) [(f(x))/(g(x)) ]=(g(x)f'(x)-g'(x)f(x))/(g^2(x))](https://img.qammunity.org/2018/formulas/mathematics/college/ooo3i8krh214thjb98380rs5e4a9gzlyyc.png)
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2018/formulas/mathematics/high-school/7yhe7a7935zygn67ltma0pqtm7b19c7cix.png)
Explanation:
*Note:
This is a pretty dense problem!
Step 1: Define
Identify

Step 2: Differentiate
- Quotient Rule:
![\displaystyle f'(x) = ((x^2 - 3x - 2)(d)/(dx)[(x + 3)(x^2 + 2)^2] - (d)/(dx)[(x^2 - 3x - 2)](x + 3)(x^2 + 2)^2)/((x^2 - 3x - 2)^2)](https://img.qammunity.org/2018/formulas/mathematics/high-school/6mlruvlphqato928gwvc9ijx4pblbhfa5g.png)
- Basic Power Rule [Derivative Property - Subtraction]:
![\displaystyle f'(x) = ((x^2 - 3x - 2)(d)/(dx)[(x + 3)(x^2 + 2)^2] - (2x^(2 - 1) - 3x^(1 - 1) - 0)(x + 3)(x^2 + 2)^2)/((x^2 - 3x - 2)^2)](https://img.qammunity.org/2018/formulas/mathematics/high-school/yu13vdwwugctrdiclj1y74st2j9dg8fp9n.png)
- Simplify:
![\displaystyle f'(x) = ((x^2 - 3x - 2)(d)/(dx)[(x + 3)(x^2 + 2)^2] - (2x - 3)(x + 3)(x^2 + 2)^2)/((x^2 - 3x - 2)^2)](https://img.qammunity.org/2018/formulas/mathematics/high-school/pdt45q31lbgzw7jmeycdgfi09okmduy4vh.png)
- Product Rule:
^2 + (x + 3)(d)/(dx)[(x^2 + 2)^2] \bigg] - (2x - 3)(x + 3)(x^2 + 2)^2)/((x^2 - 3x - 2)^2)](https://img.qammunity.org/2018/formulas/mathematics/high-school/27oww52w3rcqwdlh88sx11yky7jmebh4or.png)
- [Brackets] Basic Power Rule [Derivative Property - Addition]:
![\displaystyle f'(x) = ((x^2 - 3x - 2) \bigg[ (x^(1 - 1) + 0)(x^2 + 2)^2 + (x + 3)(d)/(dx)[(x^2 + 2)^2] \bigg] - (2x - 3)(x + 3)(x^2 + 2)^2)/((x^2 - 3x - 2)^2)](https://img.qammunity.org/2018/formulas/mathematics/high-school/wyg7w7hsspgrvl0z0jyrmrmzt8hli461z0.png)
- [Brackets] Simplify:
![\displaystyle f'(x) = ((x^2 - 3x - 2) \bigg[ (x^2 + 2)^2 + (x + 3)(d)/(dx)[(x^2 + 2)^2] \bigg] - (2x - 3)(x + 3)(x^2 + 2)^2)/((x^2 - 3x - 2)^2)](https://img.qammunity.org/2018/formulas/mathematics/high-school/x8sieof5pyfcd650w7vkik0yogyba2n2sy.png)
- [Brackets] Chain Rule:
![\displaystyle f'(x) = ((x^2 - 3x - 2) \bigg[ (x^2 + 2)^2 + (x + 3)2(x^2 + 2)^(2 - 1) \cdot (d)/(dx)[(x^2 + 2)] \bigg] - (2x - 3)(x + 3)(x^2 + 2)^2)/((x^2 - 3x - 2)^2)](https://img.qammunity.org/2018/formulas/mathematics/high-school/yohetbpckxvyc1jlxwgyan8ovrcvnagy47.png)
- [Brackets] Simplify:
![\displaystyle f'(x) = ((x^2 - 3x - 2) \bigg[ (x^2 + 2)^2 + 2(x + 3)(x^2 + 2) \cdot (d)/(dx)[(x^2 + 2)] \bigg] - (2x - 3)(x + 3)(x^2 + 2)^2)/((x^2 - 3x - 2)^2)](https://img.qammunity.org/2018/formulas/mathematics/high-school/9goy9ijmfppfp4h76ljeu69gxiawncgy4r.png)
- [Brackets] Basic Power Rule [Derivative Property - Addition]:
![\displaystyle f'(x) = ((x^2 - 3x - 2) \bigg[ (x^2 + 2)^2 + 2(x + 3)(x^2 + 2) \cdot (2x^(2 - 1) + 0) \bigg] - (2x - 3)(x + 3)(x^2 + 2)^2)/((x^2 - 3x - 2)^2)](https://img.qammunity.org/2018/formulas/mathematics/high-school/23n9mr4np2dhti9cwl417j4xsk6zqmcq8y.png)
- [Brackets] Simplify:
![\displaystyle f'(x) = ((x^2 - 3x - 2) \bigg[ (x^2 + 2)^2 + 2(x + 3)(x^2 + 2) \cdot 2x \bigg] - (2x - 3)(x + 3)(x^2 + 2)^2)/((x^2 - 3x - 2)^2)](https://img.qammunity.org/2018/formulas/mathematics/high-school/zh7sdxp9p7nh8njzzmo9822qvg8c68qaxh.png)
- [Brackets] Multiply:
![\displaystyle f'(x) = ((x^2 - 3x - 2) \bigg[ (x^2 + 2)^2 + 4x(x + 3)(x^2 + 2) \bigg] - (2x - 3)(x + 3)(x^2 + 2)^2)/((x^2 - 3x - 2)^2)](https://img.qammunity.org/2018/formulas/mathematics/high-school/g53qp7we9bf9xnaiwt3prty3nvmff2qlvf.png)
- [Brackets] Factor:
![\displaystyle f'(x) = ((x^2 - 3x - 2) \bigg[ (x^2 + 2)[(x^2 + 2) + 4x(x + 3)] \bigg] - (2x - 3)(x + 3)(x^2 + 2)^2)/((x^2 - 3x - 2)^2)](https://img.qammunity.org/2018/formulas/mathematics/high-school/f5juf2er7fq1devmwqeykrdiq7ejdgra65.png)
- [Inner Brackets] (Parenthesis) Distribute 4x:
![\displaystyle f'(x) = ((x^2 - 3x - 2) \bigg[ (x^2 + 2)[(x^2 + 2) + 4x^2 + 12x] \bigg] - (2x - 3)(x + 3)(x^2 + 2)^2)/((x^2 - 3x - 2)^2)](https://img.qammunity.org/2018/formulas/mathematics/high-school/t4rme8nyyq9ar50v864956cmzfesgg7rwk.png)
- [Inner Brackets] Combine like terms:

- Factor:
![\displaystyle f'(x) = ((x^2 + 2) \bigg[ (x^2 - 3x - 2)(5x^2 + 12x + 2) - (2x - 3)(x + 3)(x^2 + 2) \bigg])/((x^2 - 3x - 2)^2)](https://img.qammunity.org/2018/formulas/mathematics/high-school/odt1uymrpctgxs2toyzqqkbaw3boo2do7q.png)
- [Brackets] Expand:
![\displaystyle f'(x) = ((x^2 + 2) \bigg[ (5x^4 - 3x^3 - 44x^2 - 30x - 4) - (2x^4 + 3x^3 - 5x^2 + 6x - 18) \bigg])/((x^2 - 3x - 2)^2)](https://img.qammunity.org/2018/formulas/mathematics/high-school/barjd04c676evsmt72xri2hbfpxha4ua50.png)
- [Brackets] Distribute negative:
![\displaystyle f'(x) = ((x^2 + 2) \bigg[ 5x^4 - 3x^3 - 44x^2 - 30x - 4 - 2x^4 - 3x^3 + 5x^2 - 6x + 18 \bigg])/((x^2 - 3x - 2)^2)](https://img.qammunity.org/2018/formulas/mathematics/high-school/mpdk1k8m4chb120ct7wjilvw35vzkatyru.png)
- [Brackets] Combine like terms:

And we are done!
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e