225k views
3 votes
Solve 2 log2 2 + 2 log2 6 − log2 3x = 3.

2 Answers

5 votes
log(base2)[2² * 6² / 3x] = 3
144 / 3x = 2^3 = 8
144/8 = 3x
18 = 3x
x = 6
User Will Morgan
by
7.9k points
0 votes

Answer:

x = 6

Explanation:

Given :
2\:log_2\:2\:+\:2\:log_26−\:log_2\:3x\:=\:3

We have to solve the given expression
2\:log_2\:2\:+\:2\:log_26−\:log_2\:3x\:=\:3

Subtract
2\log _2\left(2\right)+2\log _2\left(6\right) both sides , we have,


2\:log_2\:2\:+\:2\:log_26-\:log_2\:3x-(2\log _2\left(2\right)+2\log _2\left(6\right)):=\:3-(2\log _2\left(2\right)+2\log _2\left(6\right))

Simplify, we have,


\log _2\left(3x\right)=3-2\log _2\left(2\right)-2\log _2\left(6\right)

Divide both side by -1, we have,


(-\log _2\left(3x\right))/(-1)=(3)/(-1)-(2\log _2\left(2\right))/(-1)-(2\log _2\left(6\right))/(-1)

Simplify, we have,


\log _2\left(3x\right)=-3+2\log _2\left(2\right)+2\log _2\left(6\right)

Apply log rule,
a=\log _b\left(b^a\right)


2\log _2\left(6\right)-1=\log _2\left(2^(2\log _2\left(6\right)-1)\right)=\log _2\left(18\right)

When log have same base,


\log _b\left(f\left(x\right)\right)=\log _b\left(g\left(x\right)\right)\quad \Rightarrow \quad f\left(x\right)=g\left(x\right)


\mathrm{For\:}\log _2\left(3x\right)=\log _2\left(18\right)\mathrm{,\:\quad solve\:}3x=18

3x = 18

x = 6

User Grofit
by
7.0k points