225k views
3 votes
Solve 2 log2 2 + 2 log2 6 − log2 3x = 3.

2 Answers

5 votes
log(base2)[2² * 6² / 3x] = 3
144 / 3x = 2^3 = 8
144/8 = 3x
18 = 3x
x = 6
User Will Morgan
by
8.6k points
0 votes

Answer:

x = 6

Explanation:

Given :
2\:log_2\:2\:+\:2\:log_26−\:log_2\:3x\:=\:3

We have to solve the given expression
2\:log_2\:2\:+\:2\:log_26−\:log_2\:3x\:=\:3

Subtract
2\log _2\left(2\right)+2\log _2\left(6\right) both sides , we have,


2\:log_2\:2\:+\:2\:log_26-\:log_2\:3x-(2\log _2\left(2\right)+2\log _2\left(6\right)):=\:3-(2\log _2\left(2\right)+2\log _2\left(6\right))

Simplify, we have,


\log _2\left(3x\right)=3-2\log _2\left(2\right)-2\log _2\left(6\right)

Divide both side by -1, we have,


(-\log _2\left(3x\right))/(-1)=(3)/(-1)-(2\log _2\left(2\right))/(-1)-(2\log _2\left(6\right))/(-1)

Simplify, we have,


\log _2\left(3x\right)=-3+2\log _2\left(2\right)+2\log _2\left(6\right)

Apply log rule,
a=\log _b\left(b^a\right)


2\log _2\left(6\right)-1=\log _2\left(2^(2\log _2\left(6\right)-1)\right)=\log _2\left(18\right)

When log have same base,


\log _b\left(f\left(x\right)\right)=\log _b\left(g\left(x\right)\right)\quad \Rightarrow \quad f\left(x\right)=g\left(x\right)


\mathrm{For\:}\log _2\left(3x\right)=\log _2\left(18\right)\mathrm{,\:\quad solve\:}3x=18

3x = 18

x = 6

User Grofit
by
7.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories