79.1k views
3 votes
Determine the period, amplitude, and frequency of 8sin(x/2)

User BumMo Koo
by
7.7k points

1 Answer

4 votes

\bf \qquad \textit{function transformations} \\ \quad \\ % function transformations for trigonometric functions \begin{array}{rllll} % left side templates f(x)=&{{ A}}sin({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ \end{array}


\bf \begin{array}{llll} % right side info \bullet \textit{ stretches or shrinks}\\ \quad \textit{horizontally by amplitude } |{{ A}}|\\ \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ \qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\ \qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\ \bullet \textit{vertical shift by }{{ D}}\\ \qquad if\ {{ D}}\textit{ is negative, downwards}\\ \qquad if\ {{ D}}\textit{ is positive, upwards}\\ \end{array}

\bf \begin{array}{llll} \bullet \textit{function period}\\ \qquad \frac{2\pi }{{{ B}}}\ for\ cos(\theta),\ sin(\theta),\ sec(\theta),\ csc(\theta)\\ \qquad \frac{\pi }{{{ B}}}\ for\ tan(\theta),\ cot(\theta) \end{array}

now, let's see yours
\bf 8sin\left( (x)/(2) \right)\implies \begin{array}{llll} 8sin(&(1)/(2)x)\\ A&B \end{array}

now.. as far as I understand, the frequency is supposed to be the reciprocal of the period
User Utpal Kumar
by
8.7k points