135k views
0 votes
derive the taylor series for sin2t by applying the picard method to the first-order system corresponding to the second-order IVP x"=-4x ; x(0)=0; x'(0)=2

User Lydon
by
8.0k points

1 Answer

5 votes
You're certainly right about reducing this second order linear ODE into a system of first order linear ODEs. I'll use different symbols to avoid any confusion with subscripts as part of the iterative process. Setting
y=x and
z=x' gives
y'=x' and
z'=x''. Your initial conditions can then be written as
x(0)=y(0)=0 and
x'(0)=z(0)=2. The system is


\begin{cases}y(0)=0\\z(0)=2\\y'=z=f(t,y,z)\\z'=-4y=g(t,y,z)\end{cases}

The Picard process will involve the recurrence relation


\begin{cases}t_0=0,~y_0(t)=0,~z_0(t)=2\\\\y_(n+1)(t)=y_0+\displaystyle\int_(t_0)^tf(s,y_n(s),z_n(s))\,\mathrm ds\\\\z_(n+1)(t)=z_0+\displaystyle\int_(t_0)^tg(s,y_n(s),z_n(s))\,\mathrm ds\end{cases}

First step:


y_1(t)=y_0+\displaystyle\int_(t_0)^tf(s,y_0(s),z_0(s))\,\mathrm ds

y_1(t)=0+\displaystyle\int_0^tz_0(s)\,\mathrm ds

y_1(t)=2\displaystyle\int_0^t\mathrm ds

y_1(t)=2t


z_1(t)=z_0+\displaystyle\int_(t_0)^tg(s,y_0(s),z_0(s))\,\mathrm ds

z_1(t)=2+\displaystyle\int_0^t-4y_0(s)\,\mathrm ds

z_1(t)=2+\displaystyle\int_0^t0\,\mathrm ds

z_1(t)=2

Second step:


y_2(t)=y_0+\displaystyle\int_(t_0)^tf(s,y_1(s),z_1(s))\,\mathrm ds

y_2(t)=\displaystyle\int_0^tz_1(s)\,\mathrm ds

y_2(t)=2\displaystyle\int_0^t\mathrm ds

y_2(t)=2t


z_2(t)=z_0+\displaystyle\int_(t_0)^tg(s,y_1(s),z_1(s))\,\mathrm ds

z_2(t)=2+\displaystyle\int_0^t-4y_1(s)\,\mathrm ds

z_2(t)=2-\displaystyle\int_0^t4(2s)\,\mathrm ds

z_2(t)=2-4t^2

Third step:


y_3(t)=\displaystyle\int_0^t(2-4s^2)\,\mathrm ds

y_3(t)=2t-\frac43t^3


z_3(t)=2+\displaystyle\int_0^t-4(2s)\,\mathrm ds

z_3(t)=2-4t^2

Fourth step:


y_4(t)=\displaystyle\int_0^t(2-4s^2)\,\mathrm ds

y_4(t)=2t-\frac43t^3


z_4(t)=2+\displaystyle\int_0^t4\left(2s-\frac43s^3\right)\,\mathrm ds

z_4(t)=2-4t^2+\frac43t^4

One more step for good measure:


y_5(t)=\displaystyle\int_0^t\left(\frac43s^4+4s^2+2\right)\,\mathrm ds

y_5(t)=2t-\frac43t^3+\frac4{15}t^5

We don't actually need
z_5(t) unless you want to continue looking for
y_6(t), but I don't think we'll need to. We have enough of a pattern to find
y=\lim\limits_(n\to\infty)y_n, which is the solution to the ODE because
x=y.


x=2t-\frac43t^3+\frac4{15}t^5+\cdots

x=2t-\frac8{3*2}t^3+(32)/(5*4*3*2)t^5+\cdots

x=\displaystyle\sum_(n=1)^\infty((-1)^(n+1)(2t)^(2n-1))/((2n-1)!)

which is indeed the Taylor series for
\sin2t.
User Mahmoh
by
8.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories