142k views
0 votes
The curve x = 2 cos(t), y = sin(t) − sin(2t), 0 ≤ t ≤ 2π crosses itself once,find this intersection point and then find the equations of the two tangent lines at the intersection point.

User Soliz
by
8.0k points

1 Answer

4 votes
You're looking for
t_1\\eq t_2 such that
(x(t_1),y(t_1))=(x(t_2),y(t_2)).


\begin{cases}2\cos t_1=2\cos t_2\\\sin t_1-\sin2t_1=\sin t_2-\sin2t_2\end{cases}

Recall that
\sin2x=2\sin x\cos x, so the second equation can be written as


\sin t_1-2\sin t_1\cos t_1=\sin t_2-2\sin t_2\cos t_2

\sin t_1(1-2\cos t_1)=\sint t_2(1-2\cos t_2)

Since
2\cos t_1=2\cos 2_t, and assuming
1-2\cos t_2\\eq0, you get


\sin t_1(1-2\cos t_1)=\sint t_2(1-2\cos t_1)

(\sin t_1-\sin t_2)(1-2\cos t_1)=0

which admits two possibilities; either
\sin t_1=\sin t_2 or
1-2\cos t_1=0. In the first case, since we're assuming
t_1\\eq t_2, we can use the fact that
\sin(\pi-x)=\sin x to arrive at a solution of
t_2=\pi-t_1.

In the second case, you have


1-2\cos t_1=0\implies \cos t_1=\frac12\implies t_1=\frac\pi3\text{ or }\frac{5\pi}3

Let's check which of these solutions work. If
t_1=\frac\pi3, then the sine equation suggests
t_2=\pi-\frac\pi3=\frac{2\pi}3. However,


\left(x\left(\frac\pi3\right),y\left(\frac\pi3\right)\right)=(1,0)

\left(x\left(\frac{2\pi}3\right),y\left(\frac{2\pi}3\right)\right)=(-1,\sqrt3)

so in fact this is an extraneous solution. So let's return to the first equation in the system,


2\cos t_1=2\cos t_2\implies \cos t_1=\cos t_2

Again, assuming
t_1\\eq t_2, we can use the fact that
\cos(2\pi-x)=\cos x to arrive at a solution of
t_2=2\pi-t_2. Now, if
t_1=\frac\pi3, we get
t_2=\frac{5\pi}3. Let's check if this works:


\left(x\left(\frac\pi3\right),y\left(\frac\pi3\right)\right)=(1,0)

\left(x\left(\frac{5\pi}3\right),y\left(\frac{5\pi}3\right)\right)=(1,0)

Indeed, this solution works! So the curve intersects itself at the point (1,0), which the curve passes for the first time through when
t=\frac\pi3 and the second time when
t=\frac{5\pi}3.

Now, to find the tangent line, we need to compute the derivative of
y with respect to
x. You have


(\mathrm dy)/(\mathrm dx)=((\mathrm dy)/(\mathrm dt))/((\mathrm dx)/(\mathrm dt))=(\cos t-2\cos2t)/(-2\sin t)=(2\cos2t-\cos t)/(2\sin t)

When
t=\frac\pi3, you have a slope of
-\frac{\sqrt3}2; at
t=\frac{5\pi}3, the slope is
\frac{\sqrt3}2.

The tangent lines are then


y_1-0=-\frac{\sqrt3}2(x-1)\implies y_1=-\frac{\sqrt3}2x+\frac{\sqrt3}2

y_2-0=\frac{\sqrt3}2(x-1)\implies y_2=\frac{\sqrt3}2x-\frac{\sqrt3}2
User MrMobster
by
8.1k points