8.1k views
3 votes
Find the inverse of matrix [3-1-10 9]

User Jfdoming
by
5.3k points

2 Answers

4 votes

\mathbf A=\begin{bmatrix}3&-1\\-10&9\end{bmatrix}

The inverse is given by


\mathbf A^(-1)=\frac1{\det\mathbf A}\mathrm{adj}\,\mathbf A

where
\det\mathbf A is the determinant of the matrix, and
\mathrm adj\,\mathbf A is the adjugate matrix, or transpose of the cofactor matrix.


\det\mathbf A=\begin{vmatrix}3&-1\\-10&9\end{vmatrix}=3(9)-(-1)(-10)=17


\mathrm{adj}\,\mathbf A=\begin{bmatrix}9&10\\1&3\end{bmatrix}^\top=\begin{bmatrix}9&1\\10&3\end{bmatrix}

So the inverse is


\mathbf A^(-1)=\frac1{17}\begin{bmatrix}9&1\\10&3\end{bmatrix}
User Nvoigt
by
5.2k points
4 votes

Answer:

C. [ 9/17 1/17 ]

[10/17 3/17 ]

User Jimmy Knoot
by
5.7k points