23.1k views
4 votes
Use Gauss-Jordan elimination to solve the following linear system.

–4x + 4y + 5z = 9
–2x + 2y + z = 3
–4x + 5y = 4

A. (3,1,–4)
B. (–1,0,1)
C. (–5,–1,0)
D. (1,2,–4) "SOME HELP PLEASE"!!!!!!!!!!!!!!!

2 Answers

5 votes
By taking a linear expression and looking at -4(x)+4(y)+5(z)=9
we can say that -1=x, 0=y, and 1=z
-4(-1)=4, 4(0)=0, 5(1)=5 So 4+5=9
-2(-1)=2, 2(0)=0, z=1 So 2+1=3
-4(-1)=4, 5(0)=0, So 4=4
User Rmchndrng
by
5.5k points
1 vote

Answer:

The correct answer is B.
(-1,0,1)

Explanation:

The given linear system is


-4x+4y+5z=9


-2x+2y+z=3


-4x+5y=4


The augmented matrix is



\left[\begin{array}{cccc}-4&4&5&|9\\-2&2&1&|3\\-4&5&0&|4\end{array}\right]

To solve this by Gauss-Jordan elimination means that, we need to reduce to reduced row echelon form.



-(1)/(4)R_1\rightarrow R_1



\left[\begin{array}{cccc}1&-1&-(5)/(4) &\:\:\:\:\:\:|-(9)/(4) \\-2&2&1&|3\\-4&5&0&|4\end{array}\right]



R_2+2R_1\rightarrow R_2


R_3+4R_1\rightarrow R_3



\left[\begin{array}{cccc}1&-1&-(5)/(4) &|-(9)/(4) \\0&0&-(3)/(2) &|-(3)/(2) \\0&1&-5&|-5\end{array}\right]



R_2\leftrightarrow R_3



\left[\begin{array}{cccc}1&-1&-(5)/(4) &|-(9)/(4) \\0&1&-5 &|-5 \\0&0&-(3)/(2)&|-(3)/(2)\end{array}\right]



R_1+R_2\rightarrow R_1



\left[\begin{array}{cccc}1&0&-(25)/(4) &|-(29)/(4) \\0&1&-5 &|-5 \\0&0&-(3)/(2)&|-(3)/(2)\end{array}\right]



-(2)/(3)R_3\rightarrow R_3



\left[\begin{array}{cccc}1&0&-(25)/(4) &|-(29)/(4) \\0&1&-5 &|\:\:-5 \\0&0&1&|\:\:\:\:\:\:\:1\end{array}\right]



R_2+5R_3\rightarrow R_2



R_1+(25)/(4)R_3\rightarrow R_1



\left[\begin{array}{cccc}1&0&0&|-1 \\0&1&0&|\:\:\:\:\:\:0\\0&0&1&|\:\:\:\:\:\:1\end{array}\right]


The matrix is now in the reduced row echelon form.

This gives the solution to be,


(-1,0,1)

User Blackle Mori
by
5.7k points