190,092 views
26 votes
26 votes
Hi, can you help me to evaluate (if possible) thesix trigonometric functions of the real number.Please.

Hi, can you help me to evaluate (if possible) thesix trigonometric functions of the-example-1
User Richard Anthony Hein
by
2.7k points

1 Answer

17 votes
17 votes

Okay, here we have this:

Considering the provided angle, we are going to evaluate the trigonometric functions, so we obtain the following:

Sine:


\begin{gathered} \sin (-(2\pi)/(3)) \\ =-\sin ((2\pi)/(3)) \\ =-\cos \mleft((\pi)/(2)-(2\pi)/(3)\mright) \\ =-\cos \mleft(-(\pi)/(6)\mright) \\ =-\cos \mleft((\pi)/(6)\mright) \\ =-(√(3))/(2) \end{gathered}

Cos:


\begin{gathered} cos\mleft(-(2\pi)/(3)\mright) \\ =\cos \mleft((2\pi)/(3)\mright) \\ =\sin \mleft((\pi)/(2)-(2\pi)/(3)\mright) \\ =\sin \mleft(-(\pi)/(6)\mright) \\ =-\sin \mleft((\pi)/(6)\mright) \\ =-(1)/(2) \end{gathered}

Tan:


\begin{gathered} tan\mleft(-(2\pi\:)/(3)\mright) \\ =(\sin (-(2\pi\: )/(3)))/(\cos (-(2\pi\: )/(3))) \\ =\frac{-\frac{\sqrt[]{3}}{2}}{-(1)/(2)} \\ =\sqrt[]{3} \end{gathered}

Csc:


\begin{gathered} \csc \mleft(-(2\pi)/(3)\mright) \\ =(1)/(\sin\left(-(2\pi)/(3)\right)) \\ =-(1)/((√(3))/(2)) \\ =-(2√(3))/(3) \end{gathered}

Sec:


\begin{gathered} \sec \mleft(-(2\pi)/(3)\mright) \\ =(1)/(\cos\left(-(2\pi)/(3)\right)) \\ =(1)/(-(1)/(2)) \\ =-2 \end{gathered}

Cot:


\begin{gathered} \cot \mleft(-(2\pi)/(3)\mright) \\ =(1)/(\tan (-(2\pi)/(3))) \\ =\frac{1}{\sqrt[]{3}} \\ =(√(3))/(3) \end{gathered}

User Mark Schill
by
3.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.