232k views
4 votes
Equation of tangent line to the polar curve r=1-cos(theta) where theta=pi/3

User Lockyer
by
8.3k points

1 Answer

7 votes
first off, let us find the slope of it, at that point, so we can plug it in the point-slope form

thus
\bf r=1-cos(\theta)\qquad \begin{cases} \theta=(\pi )/(3)\\ --------------\\ r=1-cos\left( (\pi )/(3) \right)\to 1-(1)/(2)\to (1)/(2) \end{cases} \\\\ -----------------------------\\\\ \left. \cfrac{dr}{d\theta} \right|_{\theta=(\pi )/(3)}\implies \cfrac{dr}{d\theta} =0-[-sin(\theta)]\to sin(\theta)\qquad when\quad \theta=(\pi )/(3) \\\\\\ \cfrac{dr}{d\theta}=sin\left( (\pi )/(3) \right)\to \cfrac{√(3)}{2}\\\\ -----------------------------\\\\


\bf y-y_1=m(x-x_1)\textit{now, we know that } \begin{cases} \theta=(\pi )/(3)\\\\ r=(1)/(2)\\\\ m=(√(3))/(2) \end{cases} \\\\\\ thus\implies y-\cfrac{1}{2}=\cfrac{√(3)}{2}\left( x-\cfrac{\pi }{3} \right) \\\\\\ y=\cfrac{√(3)}{2}x-\cfrac{√(3)\ \pi }{6}+\cfrac{1}{2}\implies y=\cfrac{√(3)}{2}x-\cfrac{√(3)\ \pi +3}{6}

and I gather you could also write it as


\bf y=\cfrac{√(3)}{2}x-\cfrac{√(3)\cdot \pi }{2\cdot 3}+\cfrac{1}{2}\implies y=\cfrac{√(3)}{2}x-\cfrac{\boxed{√(3)}\cdot \pi }{2\cdot \boxed{√(3^2)}}+\cfrac{1}{2} \\\\\\ y=\cfrac{√(3)}{2}x-\cfrac{\pi }{2√(3)}+\cfrac{1}{2}\implies y=\cfrac{√(3)}{2}x-\cfrac{\pi +√(3)}{2√(3)}

and that's equivalent as well
User Guillermo Aguirre
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories