37.3k views
0 votes
Write out the first few terms of the Picard iteration scheme for each of the following initial value problems. Where possible, find explicit solutions and describe the domain of this solution.

a) x'=x+2 ; x(0)=2
b) x'=x^(4/3) ; x(0)=0
c) x'=x^(4/3) ; x(0)=1

User Numberwhun
by
8.0k points

1 Answer

4 votes
Given an ODE
x'=f(t,x) with initial condition
x(t_0)=x_0, the general process is to write the ODE as an integral equation,


x(t)=x_0+\displaystyle\int_(t_0)^tf(u,x(u))\,\mathrm du

By setting
x_0(t)=x_0 for all
t, we get the following recurrence for
n\ge1.


x_(n+1)(t)=x_0+\displaystyle\int_(t_0)^tf(u,x_n(u))\,\mathrm du

From this we work towards finding a pattern for
x_n so that we can find a solution of the form
x=\lim\limits_(n\to\infty)x_n.


\begin{cases}x'=x+2\\x(0)=2\end{cases}

Write this as the integral equation,


x_(n+1)=x(0)+\displaystyle\int_(t_0)^t(x_n(u)+2)\,\mathrm du

First step:


x_1=x(0)+\displaystyle\int_(t_0)^t(x_0(u)+2)\,\mathrm du

x_1=2\displaystyle\int_0^t\mathrm du

x_1=2t

Second step:


x_2=x(0)+\displaystyle\int_(t_0)^t(x_1(u)+2)\,\mathrm du

x_2=\displaystyle\int_0^t(2u+2)\,\mathrm du

x_2=t^2+2t

Third step:


x_3=x(0)+\displaystyle\int_(t_0)^t(x_2(u)+2)\,\mathrm du

x_3=\displaystyle\int_0^t(t^2+2t+2)\,\mathrm du

x_3=\frac13t^3+t^2+2t

Fourth step:


x_4=x(0)+\displaystyle\int_(t_0)^t(x_3(u)+2)\,\mathrm du

x_4=\displaystyle\int_0^t\left(\frac13u^3+u^2+2u+2\right)\,\mathrm du

x_4=\frac1{4*3}t^4+\frac13t^3+t^2+2t

You should already start seeing a pattern. Recall that


e^t=\displaystyle\sum_(k=0)^\infty(x^k)/(k!)=1+t+\frac{t^2}2+(t^3)/(2*3)+(t^4)/(2*3*4)+\cdots

Multiplying this by 2 gives


2e^t=2+2t+t^2+\frac{t^3}3+(t^4)/(4*3)+\cdots

which matches the solution we have for
x_4 except for that first term. So subtracting that, we find a solution of


x=2e^t-2

with a domain of
t\in\mathbb R.

Hopefully this gives some insight on how to approach the other two problems.
User Mckuok
by
7.7k points