94.8k views
1 vote
What is the correlation coefficient with the following data points:

(1,6), (3,2), (7,5), (6,2)?

A.) 0.27
B.) -0.27
C.) 0.28
D.) -0.28

1 Answer

6 votes

Answer:

Option D → -0.28 Explanation:

Given : Data points : (1,6), (3,2), (7,5), (6,2)

To find : What is the correlation coefficient with the following data points?

Solution :

Let x= 1,3,7,6

And y=6,2,5,2

N is the number of points i.e, N=4

The formula of correlation coefficient is


r=\frac{n(\sum xy)-(\sum x)(\sum y)}{\sqrt{{(n\sum x^(2)-(\sum x)^(2))(n\sum y^(2)-(\sum y)^(2))}}}

Now, we find term by term


\sum x = 1+3+7+6=17


\sum y = 6+2+5+2=15


\sum xy = 6+6+35+12=59


\sum x^(2)= 1+9+49+36=95


\sum y^(2)=36+4+25+4=69

Substitute all the values in the formula,


r=\frac{4(59)-(17)(15)}{\sqrt{{(4(95)-(17)^(2))(4(69)-(15)^(2))}}}


r=\frac{236-255}{\sqrt{{(380-289)(276-225)}}}


r=\frac{-19}{\sqrt{{(91)(51)}}}


r=(-19)/(√(4641))


r=(-19)/(68.12)


r=-0.278


r\approx -0.28

Therefore, The correlation coefficient is -0.28.

So, Option D is correct.

User Maxdec
by
7.1k points