Answer:
Half life of the radioactive element is 5 days.
Explanation:
Formula to get the final amount after the radioactive decay in 't' days,
![A_t=A_0e^(-\lambda t)](https://img.qammunity.org/2022/formulas/mathematics/high-school/zuq2vi99hzqpirzhh8h7f83125dre9tb01.png)
Here
= Initial amount
λ = Decay constant
t = duration of decay
= Final amount
![1000=100000e^(-\lambda(34))](https://img.qammunity.org/2022/formulas/mathematics/high-school/2o7wnyit8pusb7tq8xhrglnpu50358855n.png)
0.01 =
![e^(-34\lambda)](https://img.qammunity.org/2022/formulas/mathematics/high-school/dndv3t41x7br2mkk1l3k2mq458c4goglyh.png)
ln(0.01) =
![\text{ln}(-e^(34\lambda)})](https://img.qammunity.org/2022/formulas/mathematics/high-school/4txpg4dbqc4f8kuq783wvs4e2ht7rd4i7m.png)
-4.6052 = -34λ
λ = 0.13544
Since, λ =
![\frac{\text{ln}(2)}{t_{(1)/(2)}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/aztuccc0fpupjch7rzhrgm470v669f47im.png)
![t_{(1)/(2)}=\frac{\text{ln}2}{0.13544}](https://img.qammunity.org/2022/formulas/mathematics/high-school/mutmmc2wkzz7t49rr8e35icx006mjfxvbi.png)
= 5.11
≈ 5 days
Therefore, half life of the radioactive element is 5 days.