96.7k views
4 votes
Find the derivative of (xlnx)/(1+lnx)

User Ruloweb
by
8.4k points

1 Answer

5 votes

Answer:


\displaystyle (dy)/(dx) = 1 - (\ln x)/(\big( \ln (x) + 1 \big)^2)

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:
\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:
\displaystyle (d)/(dx) [(f(x))/(g(x)) ]=(g(x)f'(x)-g'(x)f(x))/(g^2(x))

Explanation:

Step 1: Define

Identify


\displaystyle y = (x \ln x)/(1 + \ln x)

Step 2: Differentiate

  1. Derivative Rule [Quotient Rule]:
    \displaystyle y' = ((x \ln x)'(1 + \ln x) - (x \ln x)(1 + \ln x)')/((1 + \ln x)^2)
  2. Derivative Rule [Product Rule]:
    \displaystyle y' = ([(x)' \ln x + x(\ln x)'](1 + \ln x) - (x \ln x)(1 + \ln x)')/((1 + \ln x)^2)
  3. Logarithmic Differentiation [Derivative Properties]:
    \displaystyle y' = ([(x)' \ln x + 1](1 + \ln x) - \ln x)/((1 + \ln x)^2)
  4. Basic Power Rule:
    \displaystyle y' = (\big( \ln (x) + 1 \big) (1 + \ln x) - \ln x)/((1 + \ln x)^2)
  5. Simplify:
    \displaystyle y' = ((1 + \ln x)^2 - \ln x)/((1 + \ln x)^2)
  6. Rewrite:
    \displaystyle y' = ((1 + \ln x)^2)/((1 + \ln x)^2) - (\ln x)/((1 + \ln x)^2)
  7. Simplify:
    \displaystyle y' = 1 - (\ln x)/((1 + \ln x)^2)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

User Ian Zhao
by
8.9k points

Related questions

1 answer
3 votes
25.5k views
asked Nov 8, 2017 87.9k views
Elliot Kroo asked Nov 8, 2017
by Elliot Kroo
8.0k points
1 answer
3 votes
87.9k views
asked Aug 12, 2022 9.9k views
Palehorse asked Aug 12, 2022
by Palehorse
7.9k points
1 answer
5 votes
9.9k views