157k views
3 votes
Find the average value of the function f(t)=cos13(5t)sin(5t) f(t)=cos13⁡(5t)sin⁡(5t) on the interval [4,10].

1 Answer

2 votes
The average value is given by


\displaystyle\frac1{10-4}\int_4^(10)\cos^(13)5t\sin5t\,\mathrm dt

Setting
y=\cos5t, you get
\mathrm dy=-5\sin5t\,\mathrm dt, and the integral becomes


\displaystyle-\frac1{30}\int_(\cos20)^(\cos50)y^(13)\,\mathrm dy

=-\frac1{30}(y^(14))/(14)\bigg|_(y=\cos20)^(y=\cos50)

=-(\cos^(14)50-\cos^(14)20)/(420)\approx-0.00145
User Tidy
by
8.4k points