160k views
4 votes
Given its parent function g(x) = (1/2)^x, what is the equation of the function shown?

Given its parent function g(x) = (1/2)^x, what is the equation of the function shown-example-1
Given its parent function g(x) = (1/2)^x, what is the equation of the function shown-example-1
Given its parent function g(x) = (1/2)^x, what is the equation of the function shown-example-2
Given its parent function g(x) = (1/2)^x, what is the equation of the function shown-example-3
User Isabelle
by
8.1k points

2 Answers

0 votes

\bf \qquad \qquad \qquad \qquad \textit{function transformations} \\ \quad \\ \begin{array}{rllll} % left side templates f(x)=&{{ A}}({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ y=&{{ A}}({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ f(x)=&{{ A}}\sqrt{{{ B}}x+{{ C}}}+{{ D}} \\ \quad \\ f(x)=&{{ A}}\mathbb{R}^{{{ B}}x+{{ C}}}+{{ D}} \end{array}


\bf \begin{array}{llll} % right side info \bullet \textit{ stretches or shrinks horizontally by } A\cdot B\\\\ \bullet \textit{ a negative A, flips it upside-down}\\\\ \bullet \textit{ horizontal shift by }( C)/( B)\\ \qquad if\ ( C)/( B)\textit{ is negative, to the right}\\ \qquad if\ ( C)/( B)\textit{ is positive, to the left}\\\\ \bullet \textit{ vertical shift by } D\\ \qquad if\ D\textit{ is negative, downwards}\\ \qquad if\ D\textit{ is positive, upwards} \end{array}

so... notice, the graph is just g(x), flipped upside-down and shifted up by 1 unit
User Skyost
by
8.3k points
4 votes

Answer: The correct equation is (B)
f(x)=-2\left((1)/(2)\right)^x+1.

Step-by-step explanation: We are given to select the correct equation of the function f(x) shown in the figure.

From the graph given in the figure, we have


f(-1)=-3,~~f(0)=-1,~~f(1)=0.

(A) First option is


f(x)=-3\left((1)/(2)\right)^x+1.

From here, we get


f(-1)=-3\left((1)/(2)\right)^(-1)+1=-3* 2+1=-5\\eq -3.

So, this option is not correct.

(B) First option is


f(x)=--2\left((1)/(2)\right)^x+1.

From here, we get


f(-1)=-2\left((1)/(2)\right)^(-1)+1=-2* 2+1=-3\\\\f(0)=-2\left(1)/(2)\right)^0+1=-2+1=-1,\\\\f(1)=-2\left((1)/(2)\right)^1+1=-1+1=0.

So, this option is correct.

(C) Third option is


f(x)=-\left((1)/(2)\right)^x-3.

From here, we get


f(-1)=-\left((1)/(2)\right)^(-1)-3=-1* 2-3=-5\\eq -3.

So, this option is not correct.

(D) Fourth option is


f(x)=-\left((1)/(2)\right)^x-1.

From here, we get


f(-1)=-\left((1)/(2)\right)^(-1)-1=--* 2-1=-3,\\\\f(0)=-\left(1)/(2)\right)^0-1=-1-1=-2\\eq -1.

So, this option is not correct.

Thus, the correct function is

(B)
f(x)=-2\left((1)/(2)\right)^x+1.

User Stephannie
by
9.1k points