221k views
3 votes
Find d2y/dx2 in terms of x and y. y^4 = x^7

User Nux
by
5.5k points

1 Answer

4 votes

y^4=x^7

Differentiating once gives


4y^3(\mathrm dy)/(\mathrm dx)=7x^6

Differentiating again gives


12y^2\left((\mathrm dy)/(\mathrm dx)\right)^2+4y^3(\mathrm d^2y)/(\mathrm dx^2)=42x^5

From the first result, you get


4y^3(\mathrm dy)/(\mathrm dx)=7x^6\implies(\mathrm dy)/(\mathrm dx)=(7x^6)/(4y^3)

and plugging this into the second gives


12y^2\left((7x^6)/(4y^3)\right)^2+4y^3(\mathrm d^2y)/(\mathrm dx^2)=42x^5

12y^2(49x^(12))/(16y^6)+4y^3(\mathrm d^2y)/(\mathrm dx^2)=42x^5

(147x^(12))/(4y^4)+4y^3(\mathrm d^2y)/(\mathrm dx^2)=42x^5

and solving for
(\mathrm d^2y)/(\mathrm dx^2) gives


(\mathrm d^2y)/(\mathrm dx^2)=(42x^5-(147x^(12))/(4y^4))/(4y^3)

(\mathrm d^2y)/(\mathrm dx^2)=(168x^5y^4-147x^(12))/(16y^7)
User Yichong
by
6.4k points