36.5k views
1 vote
Find the exact area of the surface obtained by rotating the curve about the x-axis.

y = sin ((pi*x)/6)
0 ≤ x ≤ 6

User Amit Dube
by
8.4k points

1 Answer

2 votes

\bf \begin{cases} y=sin\left( (\pi x)/(6) \right)\\ 0\le x\le 6\\ \textit{about the x-axis, or }y=0 \end{cases}\\\\ -----------------------------\\\\ \textit{using the disc method} \\\\ V=\int\limits_(0)^(6)\pi \left[ sin\left( (\pi x)/(6) \right) \right]^2\cdot dx\implies \pi\int\limits_(0)^(6) \left[ sin\left( (\pi x)/(6) \right) \right]^2\cdot dx \\\\\\ \pi\int\limits_(0)^(6) sin^2\left( (\pi x)/(6) \right) \cdot dx\\\\ -----------------------------\\\\


\bf \textit{now, let us check the double angle identities} \\\\ cos(2\theta)= \begin{cases} cos^2(\theta)-sin^2(\theta)\\ \boxed{1-2sin^2(\theta)}\\ 2cos^2(\theta)-1 \end{cases} \\\\\\ thus\implies cos(2\theta)=1-2sin^2(\theta)\implies 2sin^2(\theta)=1-cos(2\theta) \\\\\\ sin^2(\theta)=\cfrac{1-cos(2\theta)}{2}\qquad thus\\\\ -----------------------------


\bf \pi\int\limits_(0)^(6) \left[ sin\left( (\pi x)/(6) \right) \right]^2\cdot dx\implies \pi\int\limits_(0)^(6) \cfrac{1-cos\left(2\cdot (\pi x)/(6) \right)}{2}\cdot dx \\\\\\ \pi\int\limits_(0)^(6)\cfrac{1}{2}dx-\pi \cdot \cfrac{1}{2}\pi\int\limits_(0)^(6)cos\left((\pi x)/(3) \right)dx \\\\\\ \left[\cfrac{\pi x}{2}-\cfrac{\pi }{2}\cdot \cfrac{sin\left((\pi x)/(3) \right)}{(\pi x)/(3) } \right]\implies \left[ \cfrac{\pi }{2}x-\cfrac{3sin\left((\pi x)/(3) \right)}{2x} \right]_0^6

and surely, you'd know how to get the values for the bounds there

User Jack Clancy
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories