5.0k views
1 vote
What is the exact value of tan(pi/24) in fractional form

1 Answer

4 votes
Recall the half angle identities for sine and cosine:


\sin^2x=\frac{1-\cos2x}2

\cos^2x=\frac{1+\cos2x}2

So you have


\tan^2x=(1-\cos2x)/(1+\cos2x)

This is useful because we have


\tan^2\frac\pi{24}=\frac{1-\cos\frac\pi{12}}{1+\cos\frac\pi{12}}

Unfortunately, we need to know the value of
\cos\frac\pi{12} to continue. But we can use either of the half-angle identities to figure this out.


\cos^2\frac\pi{12}=\frac{1+\cos\frac\pi6}2

\cos^2\frac\pi{12}=\frac{1+\frac{\sqrt3}2}2

\cos^2\frac\pi{12}=\frac{2+\sqrt3}4

\cos\frac\pi{12}=\frac{√(2+\sqrt3)}2

where you take the positive root since
\cos x is positive when
0\le x<\frac\pi2.

So, you have


\tan^2\frac\pi{24}=\frac{1-\frac{√(2+\sqrt3)}2}{1+\frac{√(2+\sqrt3)}2}

\tan^2\frac\pi{24}=(2-√(2+\sqrt3))/(2+√(2+\sqrt3))

\tan\frac\pi{24}=\sqrt{(2-√(2+\sqrt3))/(2+√(2+\sqrt3))}

again taking the positive root because
\tan x is positive when
0<x<\frac\pi2.
User Fguillen
by
6.4k points