Answer:
(f + g)(x) = 2x³ + 3x² + x + 2
Step-by-step explanation:
If f(x) = 2x³ - 5x² + x - 3 and g(x) = 8x² + 5, we can calculate (f + g)(x) as follows
(f + g)(x) = f(x) + g(x)
(f + g)(x) = (2x³ - 5x² + x - 3) + (8x² + 5)
Then, we can simplify the expression adding the like terms, so
(f + g)(x) = 2x³ - 5x² + x - 3 + 8x² + 5
(f + g)(x) = 2x³ + (-5x² + 8x²) + x + (-3 + 5)
(f + g)(x) = 2x³ + 3x² + x + 2
Therefore, the answer is:
(f + g)(x) = 2x³ + 3x² + x + 2