Using the area method in finding the quotient.
The values of A and B are as follows,
A = C/6
B = D/6
A is the quotient of C and 6,
B is the quotient of D and 6.
From the problem, we only have choices of number to input in the boxes.
48, 9, 90, 8, 540, 36 and 0
We will select one to number to be the value of C and the value A must be in the given numbers to be used.
Let's say C = 48
A = 48/6 = 8
Since 8 is included in the list of numbers. This is applicable.
Now for D and B,
Note that the sum of C and D must be equal to the given dividend, the dividend from the problem is 588
Since we already have the value of C = 48, the value of D must be :
588 - C = D
588 - 48 = 540
And 540 is also included in the list of numbers, so D = 540
The value of B will be :
B = D/6
B = 540/6
B = 90
90 is also included in the list of numbers.
The final diagram will be :
For part B, the quotient is the sum of A and B
A = 8, B = 90
Quotient = A + B
= 8 + 90
Quotient = 98