140k views
1 vote
How do i put (5x)-5/4 in radical form

2 Answers

5 votes

\bf a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^( n)} \qquad \qquad \sqrt[{ m}]{a^( n)}\implies a^{\frac{{ n}}{{ m}}} \\\quad \\a^{-\frac{{ n}}{{ m}}} = \cfrac{1}{a^{\frac{{ n}}{{ m}}}} \implies \cfrac{1}{\sqrt[{ m}]{a^( n)}}\qquad\qquad \cfrac{1}{\sqrt[{ m}]{a^( n)}}= \cfrac{1}{a^{\frac{{ n}}{{ m}}}}\implies a^{-\frac{{ n}}{{ m}}} \\\\ -----------------------------\\\\


\bf thus \\\\ (5x)^{-(5)/(4)}\implies \cfrac{1}{(5x)^{(5)/(4)}}\implies \cfrac{1}{\sqrt[4]{(5x)^5}}\implies \cfrac{1}{\sqrt[4]{5^5x^5}} \\\\ \cfrac{1}{5x\sqrt[4]{5x}}
User Abacus
by
7.8k points
2 votes
assuming you mean
(5x)^ (-5)/(4)

remember

x^(-m)= (1)/(x^m) and

x^ (m)/(n)= \sqrt[n]{x^m}

combining we get

x^ (-m)/(n)= (1)/(x^(m)/(n)) = \frac{1}{ \sqrt[n]{x^m} }
so


(5x)^ (-5)/(6)= (1)/((5x)^(5)/(4)) = \frac{1}{ \sqrt[4]{(5x)^5} } =\frac{1}{ 5x\sqrt[4]{5x} }


User Sherin Jose
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories