26,462 views
13 votes
13 votes
Use (60° - 45°) = 15° to find the exact value of cos 15º.vaV2 + V6V-V6(b)(c)4(d)4+ V62

User Francesco Gallarotti
by
2.7k points

1 Answer

25 votes
25 votes

Answer;


B\text{. }\frac{\sqrt[]{2}+\sqrt[]{6}}{4}

Explanation;

Given that;


(60^0-45^0)=15^0

Hence;


\text{Cos 15}^0=Cos(60^0-45^0)

According to trigonometry identity;


\begin{gathered} Cos(60^0-45^0\text{) = Cos60 Cos45 + Sin60Sin45} \\ Cos(60^0-45^0\text{) }=(1)/(2)(\frac{1}{\sqrt[]{2}})+\frac{\sqrt[]{3}}{2}(\frac{1}{\sqrt[]{2}}) \end{gathered}

Evaluate the result by finding the LCM


Cos(60^0-45^0\text{) }=\frac{1+\sqrt[]{3}}{2\sqrt[]{2}}

Rationalize;


\begin{gathered} Cos(60^0-45^0\text{) }=\frac{1+\sqrt[]{3}}{2\sqrt[]{2}}*\frac{\sqrt[]{2}}{\sqrt[]{2}} \\ Cos(60^0-45^0\text{) }=\frac{\sqrt[]{2}(1+\sqrt[]{3})}{2\cdot2} \\ Cos(60^0-45^0\text{) }=\frac{\sqrt[]{2}+\sqrt[]{6}}{4} \end{gathered}

Hence the required reusult is;


\frac{\sqrt[]{2}+\sqrt[]{6}}{4}

User Jame
by
2.7k points