31.6k views
3 votes
What is the answer to the system of equations problem
3x=2y+10
9y=3x-7

1 Answer

0 votes
Solving:


\left \{ {{3x = 2y + 10} \atop {9y = 3x-7}} \right.
Organize by putting the unknowns left and right the numbers without letter, changing the signal when changing sides.

\left \{ {{3x-2y=10\:(I)} \atop {-3x+9y=-7\:(II)}} \right.
Eliminate opposites (+ 3x and -3x)

\left \{ {{\diagup\!\!\!\!3x-2y=10} \atop {-\diagup\!\!\!\!3x+9y=-7}} \right.

\left \{ {{-2y=10} \atop {9y=-7}} \right.
----------------------------

7y = 3

\boxed{y = (3)/(7) }

Now substitute the found value "y" in the first equation:

3x-2y=10\:(I)

3x-2* (3)/(7) =10

3x- (6)/(7) = 10

(21x)/(\diagup\!\!\!\!7) - (6)/(\diagup\!\!\!\!7) = (70)/(\diagup\!\!\!\!7)

21x - 6 = 70

21x = 70 + 6

21x = 76

\boxed{x = (76)/(21) }

Answer:

(x,y) = ( (76)/(21) , (3)/(7) )\end{array}}\qquad\quad\checkmark



Taking the truth proof


3x - 2y = 10\:(I)

3* (76)/(21) - 2* (3)/(7) = 10

(228)/(21) - (6)/(7) = 10

(1596-126)/(147) = 10

(1470)/(147) = 10

10 = 10\:(TRUE)






User Eli Acherkan
by
6.2k points