210k views
0 votes
Find a, b , and h so that f(x)= a sin (b(x-h))
f(x)=5cosx+2sinx

1 Answer

6 votes

a\sin(b(x-h))=a\sin(bx)\cos(bh)-a\cos(bx)\sin(bh)

For this to be equivalent to
5\cos x+2\sin x, you require
b=1 and


\begin{cases}a\cos h=2\\-a\sin h=5\end{cases}

Dividing the second equation by the first gives


(-a\sin h)/(a\cos h)=-\tan h=\frac52\implies h=\arctan\left(-\frac52\right)=-\arctan\frac52

Meanwhile, you also get


a\cos\left(-\arctan\frac52\right)=2\implies a\cos\left(\arctan\frac52\right)=(2a)/(√(29))=2\implies a=√(29)

So,


f(x)=5\cos x+2\sin x=√(29)\sin\left(x+\arctan\frac52\right)
User Jason Lam
by
6.2k points