14.7k views
4 votes
Express (1/2)! in terms of pi.

1 Answer

3 votes
Since


n!=\Gamma(n+1)=\displaystyle\int_0^\infty t^ne^(-t)\,\mathrm dt

you have


\left(\frac12\right)!=\displaystyle\int_0^\infty t^(1/2)e^(-t)\,\mathrm dt

Let
u=t^(1/2), so that
u^2=t and
2u\,\mathrm du=\mathrm dt. This means the integral is equivalent to


\displaystyle2\int_0^\infty u^2e^(-u^2)\,\mathrm du

Integrating by parts, setting
f=u,
\mathrm df=\mathrm du and
\mathrm dg=ue^(-u^2)\,\mathrm du,
g=-\frac12e^(-u^2) yields


\displaystyle2\int_0^\infty u^2e^(-u^2)\,\mathrm du=2\left(-\frac12ue^(-u^2)\bigg|_(u=0)^(u\to\infty)+\frac12\int_0^\infty e^(-u^2)\,\mathrm du\right)=\int_0^\infty e^(-u^2)\,\mathrm du

You might already know that the value of this integral is
\frac{\sqrt\pi}2, so you're done. Or, if you're not familiar, you can derive this result.

If
\mathcal I(x)=\displaystyle\int_0^\infty e^(-x^2)\,\mathrm dx, then you have


\displaystyle\mathcal I(x)\mathcal I(y)=\left(\int_0^\infty e^(-x^2)\,\mathrm dx\right)\left(\int_0^\infty e^(-y^2)\,\mathrm dy\right)=\int_0^\infty\int_0^\infty e^(-(x^2+y^2))\,\mathrm dx\,\mathrm dy

Converting to polar coordinates yields


\displaystyle\int_0^(\pi/2)\int_0^\infty re^(-r^2)\,\mathrm dr\,\mathrm d\theta=\frac\pi2\int_0^\infty re^(-r^2)\,\mathrm dr=\frac\pi4

and so


\displaystyle\mathcal I(x)^2=\mathcal I(x)\mathcal I(x)=\frac\pi4\implies \mathcal I(x)=\frac{\sqrt\pi}2
User Jasonline
by
8.5k points