14.7k views
4 votes
Express (1/2)! in terms of pi.

1 Answer

3 votes
Since


n!=\Gamma(n+1)=\displaystyle\int_0^\infty t^ne^(-t)\,\mathrm dt

you have


\left(\frac12\right)!=\displaystyle\int_0^\infty t^(1/2)e^(-t)\,\mathrm dt

Let
u=t^(1/2), so that
u^2=t and
2u\,\mathrm du=\mathrm dt. This means the integral is equivalent to


\displaystyle2\int_0^\infty u^2e^(-u^2)\,\mathrm du

Integrating by parts, setting
f=u,
\mathrm df=\mathrm du and
\mathrm dg=ue^(-u^2)\,\mathrm du,
g=-\frac12e^(-u^2) yields


\displaystyle2\int_0^\infty u^2e^(-u^2)\,\mathrm du=2\left(-\frac12ue^(-u^2)\bigg|_(u=0)^(u\to\infty)+\frac12\int_0^\infty e^(-u^2)\,\mathrm du\right)=\int_0^\infty e^(-u^2)\,\mathrm du

You might already know that the value of this integral is
\frac{\sqrt\pi}2, so you're done. Or, if you're not familiar, you can derive this result.

If
\mathcal I(x)=\displaystyle\int_0^\infty e^(-x^2)\,\mathrm dx, then you have


\displaystyle\mathcal I(x)\mathcal I(y)=\left(\int_0^\infty e^(-x^2)\,\mathrm dx\right)\left(\int_0^\infty e^(-y^2)\,\mathrm dy\right)=\int_0^\infty\int_0^\infty e^(-(x^2+y^2))\,\mathrm dx\,\mathrm dy

Converting to polar coordinates yields


\displaystyle\int_0^(\pi/2)\int_0^\infty re^(-r^2)\,\mathrm dr\,\mathrm d\theta=\frac\pi2\int_0^\infty re^(-r^2)\,\mathrm dr=\frac\pi4

and so


\displaystyle\mathcal I(x)^2=\mathcal I(x)\mathcal I(x)=\frac\pi4\implies \mathcal I(x)=\frac{\sqrt\pi}2
User Jasonline
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories