455,941 views
17 votes
17 votes
Find the coordinates of the stationary points of the curve and use the secondderivative to determine the type of each.

Find the coordinates of the stationary points of the curve and use the secondderivative-example-1
User Edthrn
by
2.3k points

1 Answer

7 votes
7 votes

Calculate the derivative of the function, as shown below


\begin{gathered} y=3x+(108)/(x)=3x+108x^(-1) \\ \Rightarrow y^(\prime)=3+108((-1)x^(-1-1))=3-108x^(-2) \\ \Rightarrow y^(\prime)=3-108x^(-2) \end{gathered}

Set y'=0 and solve for x, as shown below


\begin{gathered} y^(\prime)=0 \\ \Rightarrow3-108x^(-2)=0,x\\e0 \\ \Rightarrow3=(108)/(x^2) \\ \Rightarrow x^2=(108)/(3) \\ \Rightarrow x^2=36 \\ \Rightarrow x=\pm\sqrt[]{36} \\ \Rightarrow x=\pm6 \end{gathered}

Their corresponding y-coordinates are


\begin{gathered} x=\pm6 \\ \Rightarrow y=3(6)+(108)/(6)=18+18=36 \\ \Rightarrow(6,36) \\ \text{and} \\ 3(-6)+(108)/(-6)=-18-18=-36 \\ \Rightarrow(-6,36) \end{gathered}

Therefore, the two stationary points are (6,36) and (-6,-36).

Using the second derivative test,


\begin{gathered} y^(\prime)=3-108x^(-2) \\ \Rightarrow y^(\doubleprime)=-108(-2x^(-2-1))=216x^(-3) \end{gathered}

Then,


\begin{gathered} y^(\doubleprime)(6)=(216)/((6)^3)=1>0\to\text{ local minimum at x=6} \\ \text{and} \\ y^(\doubleprime)(-6)=(216)/((-6)^3)=-1<0\to\text{ local maximum at x=-6} \end{gathered}

(6,36) is a local minimum and (-6,-36) is a local maximum.

User Letroll
by
2.8k points