140k views
3 votes
Which congruence statement does not necessarily describe the triangles shown if Δ

DEF≈ΔFGHa.

choices are in attachment.

Which congruence statement does not necessarily describe the triangles shown if Δ DEF-example-1
Which congruence statement does not necessarily describe the triangles shown if Δ DEF-example-1
Which congruence statement does not necessarily describe the triangles shown if Δ DEF-example-2

2 Answers

2 votes
Here, Your Answer would be: Option B) ΔFDE ≈ ΔFGH

Hope this helps!
User Hida
by
8.5k points
7 votes

Answer:

Option b.

Explanation:

Given information :
\triangle DE F\cong \triangle FGH

We need to check which congruence statement does not necessarily describe the triangles shown if
\triangle DE F\cong \triangle FGH.

Corresponding part of congruent triangles are congruent.


\angle D\cong \angle F


\angle E\cong \angle G


\angle F\cong \angle H

Using these corresponding angles we can say that


\triangle ED F\cong \triangle GFH


\triangle FDE \cong \triangle HFG


\triangle EFD\cong \triangle GHF


\triangle FED\cong \triangle HGF

In the given options
\triangle ED F\cong \triangle GFH,
\triangle EFD\cong \triangle GHF and
\triangle FED\cong \triangle HGF congruence statement are true.

Only
\triangle FDE \cong \triangle FGH does not necessarily describe the triangles.

Therefore, the correct option is b.

User Plagon
by
8.3k points