192k views
3 votes
The interior angles of a hexegon are in the ratio 3:3:4:5:6:7. Find; (a) The size of the smallest angle. (b) The size of the largest angle​

1 Answer

9 votes

Answer: (a)
77\frac17^(\circ) (b) 180°

Step-by-step explanation:

Sum of interior angles of a polygon with n-sides:
(n-2)*180^(\circ)

In hexagon, total sides: n =6

Given: The interior angles of a hexagon are in the ratio 3:3:4:5:6:7.

Let the angles be 3x , 3x, 4x, 5x, 6x, 7x

Then,


3x+3x+4x+5x+6x+7x=(6-2)*180^(\circ)\\\\\Rightarrow\ 28x=4* 180\\\\\\\Rightarrow\ x=(4*180)/(28)\\\\\Rightarrow\ x=25(5)/(7)^(\circ)

Smallest angle= 3x =
3* (180)/(7)=77\frac17^(\circ)

Largest angle = 7x =
7*(180)/(7)=180^(\circ)

User John Whiter
by
8.5k points