80,546 views
43 votes
43 votes
The length of the diagonal of a Rectangle is 14cm,and it forms a 30 degree angle in one corner of the rectangle.What is the area of the rectangle.(A=LxW)Just number 20

User Cleric
by
2.8k points

1 Answer

9 votes
9 votes


\text{Area}=84.87(cm^2)

Step-by-step explanation

Step 1

draw the rectangle

here we have a rigth triangle,then

Let


\begin{gathered} hypotenuse=14 \\ agle=30\text{ \degree} \\ \text{adjacent side= length= l} \end{gathered}

so, we need a function that relates those values


\cos \Theta=\frac{adjacent\text{ side}}{\text{hypotenuse}}

replace and solve for length


\begin{gathered} \cos \Theta=\frac{adjacent\text{ side}}{\text{hypotenuse}} \\ \text{hypotenuse}\cdot\cos \Theta=adjacent\text{ side} \\ 14\text{ cm }\cdot\cos 30=l \\ 12.12435\text{ cm=l} \end{gathered}

Step 2

width

similarity, we need a function that relates


\sin \text{ }\Theta=\frac{opposite\text{ side}}{\text{hypotenuse}}

let


\text{opposite side= width=w}

replace and solve for w


\begin{gathered} \sin \text{ }\Theta=\frac{opposite\text{ side}}{\text{hypotenuse}} \\ \text{hypotenuse}\cdot\sin \Theta=opposite\text{ side} \\ 14\text{ cm }\cdot\sin \text{ 30=w} \\ 7cm=w \end{gathered}

Step 3

finally, the area of a rectangle is given by


\begin{gathered} \text{Area}=\text{ length }\cdot width \\ \text{replacing} \\ \text{Area}=(12.12\cdot7)(cm^2) \\ \text{Area}=84.87(cm^2) \end{gathered}

therefore, the answer is


\text{Area}=84.87(cm^2)

I hope this helps you

The length of the diagonal of a Rectangle is 14cm,and it forms a 30 degree angle in-example-1
User Bruno Franco
by
3.3k points