Answer:
![(16 y^(22))/(x^(10)z^(10))](https://img.qammunity.org/2023/formulas/mathematics/high-school/cvhh3uo71e3ru8ry78oz0qejcs1ruv4nvq.png)
Explanation:
Given expression is ,
This would be simplified using the law of exponents , some of which I will use here are ,
Using the above laws ,
Using the second law mentioned above , we have,
![\sf \longrightarrow \bigg[ (1)/(4)(x^(3+2))(y^(-5-6))(z^(8-3))\bigg]^(-2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/cwytddc8kkm2s3esbhnzzewjbjlecao15k.png)
Simplify ,
![\sf \longrightarrow \bigg[(1)/(4) x^5y^(-11)z^5\bigg]^(-2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/o83az2wxm2dk9qmsy0az4vz0v71t9lsetm.png)
Using the first law mentioned above , we have,
![\sf \longrightarrow \bigg[ (1)/(4^(-2)) x^(5(-2)) y^(-11(-2)) z^(5(-2))\bigg]](https://img.qammunity.org/2023/formulas/mathematics/high-school/vgceqvayso0d7lr79z4y13jeylbodkov5a.png)
Simplify,
![\sf \longrightarrow 4^2x^(-10)y^(22) z^(-10)](https://img.qammunity.org/2023/formulas/mathematics/high-school/5jw92w15oiergictgg85s144s7617a1ra3.png)
Finally using the fourth law mentioned above , we have ,
![\sf \longrightarrow \boxed{\bf (16 y^(22))/(x^(10)z^(10))}](https://img.qammunity.org/2023/formulas/mathematics/high-school/t1d3foestrxo2e1f5tuzrr9yearul82yje.png)
Option K is the correct answer.