Answer:
1) equation of line is: y-3=0
2) equation of line is:
![\mathbf{y-3=-(1)/(2)(x-4)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/fy45vketqjiy25x775f2e1ww765usg93e0.png)
3) equation of line is:
![\mathbf{y+3=-(4)/(3)(x-3}](https://img.qammunity.org/2022/formulas/mathematics/high-school/2xpis0yakrtb2ym33bonn4ngcxpamqheg9.png)
4) equation of line is:
![\mathbf{y-2=-2(x-2)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/qumk02izh4up0rb7oxoiupqz0zgeoq125j.png)
Explanation:
We need to find the equation of the line using Two-Point form.
The general equation of two-point form is:
where m is slope.
The formula used to calculate slope is:
![Slope=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/74v13u5xocmslbx1zls2px1jkbzuf7apjd.png)
1. (1,3) and (-2,3)
First finding slope
We have:
![x_1=1, y_1=3, x_2=-2, y_2=3](https://img.qammunity.org/2022/formulas/mathematics/high-school/byvsaudp2w3f05wes769mcl2q2d11j208h.png)
![Slope=(y_2-y_1)/(x_2-x_1)\\Slope=(3-3)/(-2-1)\\Slope=(0)/(-3)\\Slope=0\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/9hb3t5d3l87kimh5w5qktpaqumymzxy599.png)
So, equation of line will be:
Using slope m=0 and point (1,3)
![y-y_1=m(x-x_1)\\y-3=0(x-1)\\y-3=0\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/s5wjvncq9c1cfcbx4nsti773pgp5lgvl8o.png)
So, equation of line is: y-3=0
2. (4,3) and (6,2)
First finding slope
We have:
![x_1=4, y_1=3, x_2=6, y_2=2](https://img.qammunity.org/2022/formulas/mathematics/high-school/2i2dxr2sl8xn3ira22s1f4648h5w18qzbg.png)
![Slope=(y_2-y_1)/(x_2-x_1)\\Slope=(2-3)/(6-4)\\Slope=(-1)/(2)\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/sbdpc6oc7knviqk12528hkl2jlbu8t8mkp.png)
So, equation of line will be:
Using slope m=
and point (4,3)
![y-y_1=m(x-x_1)\\y-3=(-1)/(2)(x-4)\\y-3=-(1)/(2)(x-4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/nyykn4ofslm3f9mm9b3nibd74g9etfr903.png)
So, equation of line is:
![\mathbf{y-3=-(1)/(2)(x-4)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/fy45vketqjiy25x775f2e1ww765usg93e0.png)
3) (3,-3) and (0,1)
First finding slope
We have:
![x_1=3, y_1=-3, x_2=0, y_2=1](https://img.qammunity.org/2022/formulas/mathematics/high-school/rh3b9eumy3ts6eow083uywd4y8fvaecfn4.png)
![Slope=(y_2-y_1)/(x_2-x_1)\\Slope=(1-(-3))/(0-3)\\Slope=(1+3)/(-3)\\Slope=-(4)/(3)\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/r2igtlmmxfwdb9phjnzdl99ne1jfpdpjud.png)
So, equation of line will be:
Using slope m=
and point (3,-3)
![y-y_1=m(x-x_1)\\y-(-3)=-(4)/(3)(x-3)\\y+3=-(4)/(3)(x-3)\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/xktf2erw932k1gtymdq45bh6hhua8rnsw7.png)
So, equation of line is:
![\mathbf{y+3=-(4)/(3)(x-3)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/yit87syg76t6wb0bjog58pwfmom8r6l3o1.png)
4) (2,2) and (4,-2)
First finding slope
We have:
![x_1=2, y_1=2, x_2=4, y_2=-2](https://img.qammunity.org/2022/formulas/mathematics/high-school/fzun0qow8fg3vb6apvhzhtv3nwd1urciml.png)
![Slope=(y_2-y_1)/(x_2-x_1)\\Slope=(-2-2)/(4-2)\\Slope=(-4)/(2)\\Slope=-2\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/uq3u2o8hd3rkiwh10he2cexfxb2mwtdin0.png)
So, equation of line will be:
Using slope m=-2 and point (2,2)
![y-y_1=-2(x-x_1)\\y-2=-2(x-2)\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/c4o1joarx6ypqktmyspdxfof8zm23xrf78.png)
So, equation of line is:
![\mathbf{y-2=-2(x-2)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/qumk02izh4up0rb7oxoiupqz0zgeoq125j.png)