Answer: B. 16.72 years
Explanation:
If interest is compounded bi-monthly, the formula to calculate the accumulated amount (A) is given by:-
, where P = principal , r= rate of interest, x= time period(years).
[1 year =12 months, total periods in 12 months if period per month is 2 = 2 x 12 =24]
Given: P= 1000, A= 2000, r= 4.15% = 0.0415
Substitute all values in formula , we get
![1000* (1+(0.0415)/(24))^(24x)=2000\\\\\Rightarrow\ (1.00172916667)^(24x)=2\\\\\text{Taking log on both sides, we get}\\\\\Rightarrow \ln(1.00172916667)^(24x)=\ln2\\\\\Rightarrow 24x\ln(1.00172916667)=\ln2\\\\\Rightarrow\ x=(\ln 2)/(24\ln(1.00172916667))\approx16.72\ years](https://img.qammunity.org/2022/formulas/mathematics/college/u0uafsdc2bmdf7i7fqogc9mppvvcu05x9j.png)
Hence, option B. is correct.