Given:
Degree of a polynomial = 3
Zeros of the polynomial = 0,5,8
f(10)=17
To find:
The polynomial function.
Solution:
The general form of a polynomial is
![P(x)=a(x-c_1)^(m_1)(x-c_2)^(m_2)...(x-c_n)^(m_n)](https://img.qammunity.org/2022/formulas/mathematics/high-school/rk3jf0bowgwvfhf9mh8p5k7uuu9r4qoatz.png)
Where, a is a constant,
are zeros with multiplicity
respectively.
Since, 0,5,8 are zeros of the polynomial, therefore, (x-0),(x-5), (x-8) are the factors of required polynomial.
...(i)
Putting x=10, we get
![f(10)=a(10)(10-5)(10-8)](https://img.qammunity.org/2022/formulas/mathematics/high-school/8svj5hrbq2spvycj94q6zs52vhcpkxt8zk.png)
We have f(10)=17.
![17=a(10)(5)(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4phivfrus04hzjoy3cd7yaqwm508sweba9.png)
![17=a(100)](https://img.qammunity.org/2022/formulas/mathematics/high-school/h2bmrvzde6slsh0jjm8fa1yp3de4qieat4.png)
![(17)/(100)=a](https://img.qammunity.org/2022/formulas/mathematics/high-school/6rs1n2mdyszzcfssgmkbio3d21zo3kulzy.png)
![0.17=a](https://img.qammunity.org/2022/formulas/mathematics/high-school/crc8mzjzfs56ydqfyuocgh1o2ip9eerk5a.png)
Putting a=0.17 in (i).
![f(x)=0.17(x)(x-5)(x-8)](https://img.qammunity.org/2022/formulas/mathematics/high-school/sydamt6f1hguik3e2yidltkwc2z8y09gxa.png)
Therefore, the required polynomial is
.