10.4k views
4 votes
Use the Change of Base Formula to show that:

log(e)=1/ln(10).
Any help is greatly appreciated!

User MPA
by
8.1k points

1 Answer

1 vote

\bf log_{{ a}}{{ b}}\implies \cfrac{log_{{ c}}{{ b}}}{log_{{ c}}{{ a}}}\\\\ -----------------------------\\\\ thus \\\\ log_(10)(e)=\cfrac{1}{ln(10)}\iff log_(10)(e)=\cfrac{1}{log_e(10)} \\\\ \textit{now, let us do the right-hand-side} \\\\ \cfrac{1}{log_e(10)}\implies \cfrac{1}{(log_(10)(10))/(log_(10)(e))}\implies \cfrac{(1)/(1)}{(log_(10)(10))/(log_(10)(e))} \\\\\\ \cfrac{1}{1}\cdot \cfrac{log_(10)(e)}{log_(10)(10)}\implies \cfrac{log_(10)(e)}{1}\implies log_(10)(e)
User Matt Fichman
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories