29.2k views
17 votes
What is the exact value of sin(105°)?


ANSWER - D) sqrt(2 + sqrt3)/2

User Partyelite
by
4.6k points

2 Answers

6 votes

Answer: D) sqrt(2 + sqrt3)/2

Step-by-step explanation: Nah

User Mloning
by
3.9k points
6 votes

Answer:


\sin 105^(\circ) = \frac{√(6)+\sqrt {2}}{4}

Explanation:

We can use the following trigonometrical identity:


\sin (\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta (1)

Where
\alpha,
\beta are angles, measured in sexagesimal degrees.

If we know that
\alpha = 135^(\circ) and
\beta = 30^(\circ), then the value of the given function is:


\sin 105^(\circ) = \sin 135^(\circ)\cdot \cos 30^(\circ) - \cos 135^(\circ)\cdot \sin 30^(\circ)


\sin 105^(\circ) = \left((√(2))/(2) \right)\cdot \left((√(3))/(2)\right)-\left(-(√(2))/(2) \right)\cdot \left((1)/(2)\right)


\sin 105^(\circ) = (√(6))/(4)+(√(2))/(4)


\sin 105^(\circ) = \sqrt{(6)/(16) }+\sqrt{(2)/(16) }


\sin 105^(\circ) = \sqrt{(3)/(8) }+\sqrt{(1)/(8) }


\sin 105^(\circ) = (√(3)+1)/(2\cdot √(2))


\sin 105^(\circ) = \frac{√(6)+\sqrt {2}}{4}

User Kolen
by
4.6k points