131k views
1 vote
D^2(y)/(dx^2)-16*k*y=9.6e^(4x) + 30e^x

User Renzop
by
7.3k points

1 Answer

5 votes
The solution depends on the value of
k. To make things simple, assume
k>0. The homogeneous part of the equation is


(\mathrm d^2y)/(\mathrm dx^2)-16ky=0

and has characteristic equation


r^2-16k=0\implies r=\pm4\sqrt k

which admits the characteristic solution
y_c=C_1e^(-4\sqrt kx)+C_2e^(4\sqrt kx).

For the solution to the nonhomogeneous equation, a reasonable guess for the particular solution might be
y_p=ae^(4x)+be^x. Then


(\mathrm d^2y_p)/(\mathrm dx^2)=16ae^(4x)+be^x

So you have


16ae^(4x)+be^x-16k(ae^(4x)+be^x)=9.6e^(4x)+30e^x

(16a-16ka)e^(4x)+(b-16kb)e^x=9.6e^(4x)+30e^x

This means


16a(1-k)=9.6\implies a=\frac3{5(1-k)}

b(1-16k)=30\implies b=(30)/(1-16k)

and so the general solution would be


y=C_1e^(-4\sqrt kx)+C_2e^(4\sqrt kx)+\frac3{5(1-k)}e^(4x)+(30)/(1-16k)e^x
User Inthu
by
7.9k points