160k views
3 votes
A DVD has a diameter of 12 centimeters. What is the area of the DVD? Round your answer to the nearest hundredth.

2 Answers

6 votes
12÷6=6
A=3.14×6^2
A= 113.04cm
User Shaymaa
by
8.3k points
4 votes

Answer:

The area of the DVD is
\\ 113.1cm^(2) (rounded to the nearest hundredth).

Explanation:

The figure below is a circle of diameter 12 centimeter in the Cartesian coordinate system.

The area of a circle is
\\ A_(circle) = \pi * r^(2) [ 1 ].

We know that
\\ d_(circle) = 2 * r, where d is the diameter (or the line segment that passes through the center of a circle and whose endpoints lie on it) and r is the radius of the circle (the distance from the circle's center to the circle's circumference).

Similarly, the circumference of a circle is the distance around a circle (the red line in the figure below).

The constant
\\ \pi is a Greek symbol and is determined by dividing the circumference of a circle by its diameter:


\pi = 3.1415926535897932384626......, although in practice
\pi = 3.1416.

To find what the DVD area is, and considering it as a circle, we can determine the area using [ 1 ].

We also know that
\\ d_(circle) = 2 * r, or:


\\ r = (d_(circle) )/(2) = (12cm)/(2) = 6cm .

So, the area of the DVD, with diameter of 12 centimeters is:


\\ A_(circle) = \pi * (6cm)^(2)


\\ A_(circle) = 36cm^(2) * \pi or


\\ A_(circle) = 113.0973355cm^(2) or rounded to the nearest hundredth:


\\ A_(circle) = 113.1cm^(2) (Because 0.097 =
\\ (97)/(1000)
\\ (100)/(1000) = (1)/(10) = 0.1).

So, the a DVD with diameter of 12 centimeters has an area of
\\ 113.1cm^(2) (rounded to the nearest hundredth).

A DVD has a diameter of 12 centimeters. What is the area of the DVD? Round your answer-example-1
User Daveywc
by
7.9k points

No related questions found