233k views
4 votes
How do you evaluate sqrt(x^2 +6x)dx

1 Answer

4 votes
Complete the square:


\displaystyle\int√(x^2+6x)\,\mathrm dx=\int√((x+3)^2-9)\,\mathrm dx

Now substitute
x+3=3\sec y, so that
\mathrm dx=3\sec y\tan y\,\mathrm dy. The integral then becomes


\displaystyle\int√((3\sec y)^2-9)(3\sec y\tan y)\,\mathrm dy

\displaystyle9\int√(\sec^2y-1)\sec y\tan y\,\mathrm dy

\displaystyle9\int√(\tan^2y)\sec y\tan y\,\mathrm dy

\displaystyle9\int\sec y\tan^2y\,\mathrm dy

Use the Pythagorean theorem to reduce the integrand to


\displaystyle9\int\sec y(\sec^2y-1)\,\mathrm dy

\displaystyle9\int(\sec^3y-\sec y)\,\mathrm dy

You can integrate
\sec^3y by parts, setting


\begin{matrix}u=\sec y&&\mathrm dv=\sec^2y\,\mathrm dy\\\mathrm du=\sec y\tan y\,\mathrm dy&&v=\tan y\end{matrix}

So,


\displaystyle\int\sec^3y\,\mathrm dy=\sec y\tan y-\int\sec y\tan^2y\,\mathrm dy

\displaystyle2\int\sec^3y\,\mathrm dy=\sec y\tan y+\int\sec y\,\mathrm dy

\displaystyle\int\sec^3y\,\mathrm dy=\frac12\sec y\tan y+\frac12\int\sec y\,\mathrm dy

This means you have


\displaystyle9\left(\frac12\sec y\tan y+\frac12\int\sec y\,\mathrm dy\right)-9\int\sec y\,\mathrm dy

\displaystyle\frac92\sec y\tan y-\frac92\int\sec y\,\mathrm dy

You can integrate
\sec y by writing


\displaystyle\int\sec y(\sec y+\tan y)/(\sec y+\tan y)\,\mathrm dy=\int(\sec^2y+\sec y\tan y)/(\sec y+\tan y)\,\mathrm dy=\int\frac{\mathrm dz}z=\ln|\sec y+\tan y|+C

So you are left with


\displaystyle\frac92\sec y\tan y-\frac92\ln|\sec y+\tan y|+C

Transforming back to
x gives you


\displaystyle\frac92\sec\left(\arcsec\frac{x+3}3\right)\tan\left(\arcsec\frac{x+3}3\right)-\frac92\ln\left|\sec\left(\arcsec\frac{x+3}3\right)+\tan\left(\arcsec\frac{x+3}3\right)\right|+C

\displaystyle\frac92\frac{x+3}3\frac{√(x^2+6x)}3-\frac92\ln\left|\frac{x+3}3+\frac{√(x^2+6x)}3\right|+C

\displaystyle\frac{(x+3)√(x^2+6x)}2-\frac92\ln\left|\frac{x+3+√(x^2+6x)}3\right|+C

\displaystyle\frac{(x+3)√(x^2+6x)}2-\frac92\ln\left|x+3+√(x^2+6x)\right|+C
User FreshBits
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.