176k views
17 votes
Find the value of x in the triangle shown below NEED HELP ASAP

Find the value of x in the triangle shown below NEED HELP ASAP-example-1

2 Answers

9 votes

To find the value of x we can apply Pythagoras theorem in this right angled triangle.

‎ ‎ ‎ ‎ ‎ ‎

So let's apply!


{ \boxed{ \sf{ \mapsto {Hypotenuse}^(2) ={Base }^(2) +{Perpendicular }^(2) }}}


\sf{ : \implies {x}^(2) = {9}^(2) + {3}^(2) }


\sf{ : \implies {x}^(2) = 81 + 9 }


\sf{ : \implies {x}^(2) = 90 }


\sf{ : \implies {x} = √(2 * 3 * 3 * 5) }


\sf{ : \implies {x} = 3 √(10) }

Hence this is the value of x.

User Jamesernator
by
4.9k points
9 votes

Answer:

x = 3√10

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtract Property of Equality

Trigonometry

[Right Triangles Only] Pythagorean Theorem: a² + b² = c²

  • a is a leg
  • b is another leg
  • c is the hypotenuse

Explanation:

Step 1: Identify Variables

Leg a = 9

Leg b = 3

Hypotenuse c = x

Step 2: Solve for x

  1. Substitute [PT]: 9² + 3² = x²
  2. Rearrange: x² = 9² + 3²
  3. Exponents: x² = 81 + 9
  4. Add: x² = 90
  5. Isolate x: x = 3√10
User Collin Green
by
5.0k points