39.9k views
3 votes
An object is moving in the plane according to these parametric equations:

x(t) = πt + cos(4πt + π/2)
y(t) = sin(4πt + π/2)

The slope of the tangent line to the path at time t is

4πcos(4πt + π/2) divided by (π-4πsin(4πt+π/2))

The first time the tangent line is vertical will be t = ?

The second time the tangent line is vertical will be t = ?

User Jedie
by
6.0k points

1 Answer

2 votes

(\mathrm dy)/(\mathrm dx)=((\mathrm dy)/(\mathrm dt))/((\mathrm dx)/(\mathrm dt))


(\mathrm dy)/(\mathrm dt)=4\pi\cos\left(4\pi t+\frac\pi2\right)

(\mathrm dx)/(\mathrm dt)=\pi-4\pi\sin\left(4\pi t+\frac\pi2\right)

So the slope at
t is


(4\pi\cos\left(4\pi t+\frac\pi2\right))/(\pi-4\pi\sin\left(4\pi t+\frac\pi2\right))=(-4\sin(4\pi t))/(1-4\cos(4\pi t))

The tangent line will be vertical when
(\mathrm dx)/(\mathrm dt)=0, which occurs for


\pi-3\pi\sin\left(4\pi t+\frac\pi2\right)=\pi-4\pi\cos(4\pi t)=0\implies\cos(4\pi t)=\frac14\implies t=\pm(\arccos\frac14)/(4\pi)+\frac n2

where
n is an integer. Assuming
t>0, we get
(\mathrm dx)/(\mathrm dt)=0 when
t=(\arccos\frac14)/(4\pi)+\frac n2. So the first time the tangent line will be vertical is when
n=0, and the second when
n=1. In other words,


t_1=\frac1{4\pi}\arccos\frac14\approx0.1049

t_2=\frac1{4\pi}\arccos\frac14+\frac12\approx0.6049
User Vss
by
5.6k points