188k views
3 votes
Find the sum of a 9-term geometric sequence when the first term is 4 and the last term is 1,024

1 Answer

6 votes

a_1=4

a_2=ra_1=4r

a_3=ra_2=r^2a_1=4r^2
...

a_9=ra_8=\cdots=r^8a_1=4r^8

So you have


1024=4r^8\implies 256=r^8\implies r=2

So the sum is


4+8+16+\cdots+512+1024

4(1+2+4+\cdots+128+256)

4(2^0+2^1+2^2+\cdots+2^7+2^8)

4\displaystyle\sum_(i=1)^92^(i-1)

4*(1-2^9)/(1-2)

2044
User Davie
by
7.9k points