176k views
18 votes
Find the distance between the points (4,-8) and (7-10).

2 Answers

7 votes

Answer:

The distance between the points (4,-8) and (7-10)


= \sqrt{ {(7 - 4)}^(2) + {( - 10 - ( - 8))}^(2) } \\ = \sqrt{ {(7 - 4)}^(2) + {( - 10 + 8)}^(2) } \\ = \sqrt{ {3}^(2) + { (- 2)}^(2) } \\ = √(9 + 4) \\ = √(13) \: units

√13 is the right answer.

User Ailie
by
5.5k points
9 votes

Answer:


\displaystyle d = √(13)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Coordinates (x, y)

Algebra II

  • Distance Formula:
    \displaystyle d = √((x_2-x_1)^2+(y_2-y_1)^2)

Explanation:

Step 1: Define

Point (4, -8)

Point (7, -10)

Step 2: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d

  1. Substitute in points [DF]:
    \displaystyle d = √((7-4)^2+(-10+8)^2)
  2. (Parenthesis) Subtract/Add:
    \displaystyle d = √((3)^2+(-2)^2)
  3. [√Radical] Exponents:
    \displaystyle d = √(9+4)
  4. [√Radical] Add:
    \displaystyle d = √(13)
User Evan Teran
by
5.3k points