218k views
4 votes
Verify each equation

1. cos(x + (pi/2)) = -sin x
2. sin(n pi + θ) = -1^(n) sin θ, n is an integer
3. (sin x + cos x)^(2) = 1 + sin 2x

User Arabia
by
6.1k points

1 Answer

2 votes
1.
\cos\left(x+\frac\pi2\right)=\cos x\cos\frac\pi2-\sin x\sin\frac\pi2=-\sin x

2.
\sin(n\pi+\theta)=\sin(n\pi)\cos\theta+\cos(n\pi)\sin\theta

Since
\{\sin0,\sin(\pm\pi),\sin(\pm2\pi),\ldots\} all amount to 0, the first term disappears. Meanwhile,
\{\cos0,\cos(\pm\pi),\cos(\pm2\pi),\ldots\}=\{1,-1,1,\ldots\} in an alternating pattern, which agrees with the sequence
(-1)^n. Hence
\sin(n\pi+\theta)=(-1)^n\sin\theta for integers
n.

3.
(\sin x+\cos x)^2=\sin^2x+2\sin x\cos x+\cos^2x=1+2\sin x\cos x=1+\sin2x
User Mikelis Kaneps
by
5.8k points