133k views
4 votes
(D^2 +2D +1)y=e^-x log(x) solve using method variation of parameter?

(D^2 +2D +1)y=e^-x log(x) solve using method variation of parameter?-example-1
User WebFashion
by
7.9k points

1 Answer

4 votes
First you'll need the complementary solutions. The characteristic equation for this ODE is


D^2+2D+1=(D+1)^2=0\implies D=-1

with multiplicity 2. This means two linearly independent solutions will be
y_1=e^(-x) and
y_2=xe^(-x).

Via variation of parameters, the particular solution will take the form


y_p=y_1u_1+y_2u_2

where


u_1=-\displaystyle\int(y_2e^(-x)\log x)/(W(y_1,y_2))\,\mathrm dx

u_2=\displaystyle\int(y_1e^(-x)\log x)/(W(y_1,y_2))\,\mathrm dx

The Wronskian is


W(y_1,y_2)=\begin{vmatrix}e^(-x)&xe^(-x)\\-e^(-x)&e^(-x)(1-x)\end{vmatrix}=e^(-2x)(1-x)+xe^(-2x)=e^(-2x)

So, you have


u_1=-\displaystyle\int(xe^(-x)e^(-x)\log x)/(e^(-2x))\,\mathrm dx

u_1=-\displaystyle\int x\log x\,\mathrm dx

u_1=\frac14x^2-\frac12x^2\log x

and


u_2=\displaystyle\int(e^(-x)e^(-x)\log x)/(e^(-2x))\,\mathrm dx

u_2=\displaystyle\int\log x\,\mathrm dx

u_2=x(\log x-1)

So the solution to the ODE is


y=C_1y_1+C_2y_2+y_1u_1+y_2u_2

y=(C_1+C_2x)e^(-x)+\left(\frac14x^2-\frac12x^2\log x\right)e^(-x)+(\log x-1)x^2e^(-x)

y=(C_1+C_2x)e^(-x)+\frac14x^2e^(-x)(2\log x-3)
User Alexxandar
by
6.9k points