133k views
4 votes
(D^2 +2D +1)y=e^-x log(x) solve using method variation of parameter?

(D^2 +2D +1)y=e^-x log(x) solve using method variation of parameter?-example-1
User WebFashion
by
8.6k points

1 Answer

4 votes
First you'll need the complementary solutions. The characteristic equation for this ODE is


D^2+2D+1=(D+1)^2=0\implies D=-1

with multiplicity 2. This means two linearly independent solutions will be
y_1=e^(-x) and
y_2=xe^(-x).

Via variation of parameters, the particular solution will take the form


y_p=y_1u_1+y_2u_2

where


u_1=-\displaystyle\int(y_2e^(-x)\log x)/(W(y_1,y_2))\,\mathrm dx

u_2=\displaystyle\int(y_1e^(-x)\log x)/(W(y_1,y_2))\,\mathrm dx

The Wronskian is


W(y_1,y_2)=\begin{vmatrix}e^(-x)&xe^(-x)\\-e^(-x)&e^(-x)(1-x)\end{vmatrix}=e^(-2x)(1-x)+xe^(-2x)=e^(-2x)

So, you have


u_1=-\displaystyle\int(xe^(-x)e^(-x)\log x)/(e^(-2x))\,\mathrm dx

u_1=-\displaystyle\int x\log x\,\mathrm dx

u_1=\frac14x^2-\frac12x^2\log x

and


u_2=\displaystyle\int(e^(-x)e^(-x)\log x)/(e^(-2x))\,\mathrm dx

u_2=\displaystyle\int\log x\,\mathrm dx

u_2=x(\log x-1)

So the solution to the ODE is


y=C_1y_1+C_2y_2+y_1u_1+y_2u_2

y=(C_1+C_2x)e^(-x)+\left(\frac14x^2-\frac12x^2\log x\right)e^(-x)+(\log x-1)x^2e^(-x)

y=(C_1+C_2x)e^(-x)+\frac14x^2e^(-x)(2\log x-3)
User Alexxandar
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories