47,576 views
27 votes
27 votes
Can I please getsome help with this question here, I can't really figure out how to find side PQ

Can I please getsome help with this question here, I can't really figure out how to-example-1
User Simon Gibbons
by
2.7k points

1 Answer

13 votes
13 votes

SOLUTION

The following diagram will help us solve the problem

(a) From the diagram, the height of the parallelogram is given as TR, and it is 40 mm

Now we can use the area which is given to us as 3,600 square-mm to find the base of the parallelogram, which is PQ

So,


\begin{gathered} \text{Area }of\text{ a parallelogram = base}* height \\ So\text{ } \\ 3600=PQ* TR \\ 3600=PQ*40 \\ 3600=40PQ \\ \text{dividing by 40, we have } \\ (3600)/(40)=(40PQ)/(40) \\ PQ=90 \end{gathered}

Hence PQ is 90 mm

(b) Now, note that the side


PS=QR

So, we will find QR

Also, since we have PQ, we can find TQ, that is


\begin{gathered} PQ=PT+TQ \\ 90=60+TQ \\ TQ=90-60 \\ TQ=30mm \end{gathered}

Note that triangle QRT is a right-angle triangle, and QR is the hypotenuse or the longest side

From pythagoras


\text{hypotenuse}^2=opposite^2+adjacent^2

So,


\begin{gathered} QR^2=TR^2+TQ^2 \\ QR^2=40^2+30^2 \\ QR^2=1600+900 \\ QR^2=2,500 \\ QR=\sqrt[]{2,500} \\ QR=50mm \end{gathered}

Now, since


\begin{gathered} PS=QR \\ \text{then } \\ PS=50mm \end{gathered}

Hence PS is 50 mm

Can I please getsome help with this question here, I can't really figure out how to-example-1
User Arezou
by
3.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.