146k views
0 votes
Please help me!

\int\limits { (1)/( x√(x^2-1) ) } \, dx

1 Answer

0 votes
Substitute
z=√(x^2-1), so that
x^2=z^2+1. Then
\mathrm dz=\frac x{√(x^2-1)}\,\mathrm dx. You have


\displaystyle\int(\mathrm dx)/(x√(x^2-1))=\int\frac x{x^2√(x^2-1)}\,\mathrm dx=\int(\mathrm dz)/(z^2+1)

This is a standard integral, and the antiderivative is


\arctan z+C

(you can verify with a trig sub of
z=\tan u, for instance). Transforming back to a function of
x, you get


\displaystyle\int(\mathrm dx)/(x√(x^2-1))=\arctan(√(x^2-1))+C
User Lessie
by
6.8k points