129k views
3 votes
I need help on number 18!!!!

I need help on number 18!!!!-example-1

1 Answer

4 votes
Solving: (According to the picture)(Using the trigonometric functions)


Cos\:60^0 = (Opposite\:leg)/(hypotenuse)

(1)/(2) = (K)/(24)
multiply cross

2*K = 24*1

2K = 24

K = (24)/(2)

\boxed{K = 12}\end{array}}\qquad\quad\checkmark

Substituting the side found in the image, we form another triangle, with the unknown "J" to be found.
We find two ways of finding the value of the "J" side.

First Way:
Solve for the Pythagorean Theorem: "In a triangle rectangle the sum of the squares of the legs is equal to the square of the hypotenuse"


J^2 + 12^2 = 24^2

J^2 + 144 = 576

J^2 = 576 - 144

J^2 = 432

J = √(432)
Make the Least Common Multiple (432)

432\:|2

216\:|2

108\:|2

54\:|2

27\:|3

9\:|3

3\:|3

1\:|\underline{2^2*2^2*3^2*3}
Replace in square root

J = √(432)

J = √(2^2*2^2*3^2*3)

J = 2*2*3√(3)

\boxed{J = 12 √(3) }\end{array}}\qquad\quad\checkmark

Second Way:(According to the picture)(Using the trigonometric functions)


Cos\:30^0 = (Opposite\:leg)/(hypotenuse)

( √(3) )/(2) = (J)/(24)
multiply cross

2*J = 24* √(3)

2J = 24 √(3)

J = (24 √(3) )/(2)

\boxed{J = 12 √(3) }\end{array}}\qquad\quad\checkmark

Answer:

\boxed{J = 12 √(3) }\end{array}}\qquad\quad\checkmark

\boxed{K = 12}\end{array}}\qquad\quad\checkmark
User George Papadakis
by
7.7k points

No related questions found