67.5k views
4 votes
Write the radical expression 8/^7√x^15 in exponential form

2 Answers

5 votes
rembber

\sqrt[n]{x^m}=x^(m)/(n)
and
(1)/(x^m)=x^(-m) so


\frac{8}{ \sqrt[7]{x^(15)} }= (8)/(x^ (15)/(7) )=8x^{((-15)/(7))}
1 vote

Answer:


8 \cdot x^{-(15)/(7)}

Explanation:

Using exponent rule:


  • \sqrt[n]{a^m} = a^{(m)/(n)}

  • a^(-m)=(1)/(a^m)

Given the radical expression:


\frac{8}{\sqrt[7]{x^(15)} }

Apply the exponent rule:


\frac{8}{x^{(15)/(7)} }

Again apply the exponent rule:


8 \cdot x^{-(15)/(7)}

Therefore, the radical expression
\frac{8}{\sqrt[7]{x^(15)} } in exponential form is,
8 \cdot x^{-(15)/(7)}

User Thames
by
8.5k points