173k views
0 votes
(4x+3y^2)dx+2xy*dy=0 by using integrating fector

User Bobmcn
by
8.8k points

1 Answer

7 votes

\underbrace{(4x+3y^2)}_M\,\mathrm dx+\underbrace{2xy}_N\,\mathrm dy=0

The ODE is exact if
(\partial M)/(\partial y)=(\partial N)/(\partial x).


M_y=6y

N_x=2y

This is not the case, so look for an integrating factor
\mu(x) such that


\frac\partial{\partial y}\mu M=\frac\partial{\partial x}\mu N

Since
\mu is a function of
x only, you have


\mu M_y=\mu'N+\mu N_x\implies\frac{\mu'}\mu=\frac{M_y-N_x}N\implies\mu=\exp\left(\displaystyle\int\frac{M_y-N_x}N\,\mathrm dx\right)

So, the integrating factor is


\mu=\exp\left(\displaystyle\int(6y-2y)/(2xy)\,\mathrm dx\right)=\exp\left(2\int\frac{\mathrm dx}x\right)=x^2

Now the ODE can be modified as


\underbrace{(4x^3+3x^2y^2)}_(M^*)\,\mathrm dx+\underbrace{2x^3y}_(N^*)\,\mathrm dy=0

Check for exactness:


{M^*}_y=6x^2y

{N^*}_x=6x^2y

so the modified ODE is indeed exact.

Now, you're looking for a solution of the form
\Psi(x,y)=C, since differentiating via the chain rule yields


(\mathrm d)/(\mathrm dx)\Psi(x,y)=\Psi_x+\Psi_y(\mathrm dy)/(\mathrm dx)=0

Matching up components, you would have


\Psi_x=M^*=4x^3+3x^2y^2

\displaystyle\int\Psi_x\,\mathrm dx=\int(4x^3+3x^2y^2)\,\mathrm dx

\Psi=x^4+x^3y^2+f(y)

Differentiate this with respect to
y to get


\Psi_y=2x^3y+f'(y)=2x^3y=N^*

f'(y)=0\implies f(y)=C_1

So the solution here is


\Psi(x,y)=x^4+x^3y^2+C_1=C\implies x^4+x^3y^2=C

Just for a final check, take the derivative to get back the original ODE:


(\mathrm d)/(\mathrm dx)[x^4+x^3y^2]=(\mathrm d)/(\mathrm dx)C

4x^3+3x^2y^2+2x^3y(\mathrm dy)/(\mathrm dx)=0

4x+3y^2+2xy(\mathrm dy)/(\mathrm dx)=0

(4x+3y^2)\,\mathrm dx+2xy\,\mathrm dy=0

so the solution is correct.
User Sunny Days
by
8.2k points